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I N S T A B I L I T Y  O F  T H E  Q U I E S C E N T  STATE OF A N  I D E A L  C O N D U C T I N G  

M E D I U M  IN  A M A G N E T I C  F I E L D  

Yu.  G. G u b a r e v  and  S. S. K o v y l i n a  1 UDC 538.4 

The linear stability of the quiescent states of an ideal compressible medium with infinite 
conductivity in a magnetic field is studied. It is shown by Lyapunov's direct method that these 
quiescent states are unstable relative to small spatial perturbations, which decrease the potential 
energy (the sum of the internal energy of the medium and the energy of the magnetic field in 
this case). Two-sided ezponential estimates of perturbation growth are obtained; the ezponents 
in these estimates are calculated using the parameters of the quiescent states and the initial 
data for perturbations. A class of the most rapidly growing perturbations is separated and an 
ezact formula to determine the rate of their increase is derived. An ezample is constructed 
of the quiescent states and the initial perturbations whose linear stage of evolution in time 
occurs in correspondence with the estimates. From the mathematical viewpoint, our results are 
preliminary, because the ezistence theorems for the solutions of the problems considered are not 
proved. 

1. F o r m u l a t i o n  of  t he  E x a c t  P r o b l e m .  The spatial motions of an ideal compressible conducting 
medium in the magnetic field are considered [1]. It is assumed that these motions occur in the domain 7" with 
a fixed, ideally conducting boundary Or and are described by the following equations [2]: 

Op hk'( Ohi COhk ~, Ovi Ovi OVk 
pDvi = - Ozi + ~ \-~xk -'~xi ] Dp + p ~ = O, Dhi = hk -~xk hi Oxk' 

O z i  = ~ D s  = O, D = ~ + v i -~z~ ,  e = e ( p , s ) ,  de  = T d~ - p d  . 

(1.1) 

Here p, v = (Vl,V2, V3), p, S, e, and T are the density, velocity, pressure, entropy, internal-energy, and 
temperature fields, respectively, h = (hl ,h2,  h3) is the magnetic field, z = (Xl,X2,X3) are the Cartesian 
coordinates, and t is the time. With other conditions not specified, summation is performed from 1 to 3 over 
the repeat indices. 

It is assumed that the no-slip conditions 

vini = O, hini = 0 (1.2) 

are satisfied at the boundary Or. Here n = (nl,n2,n3) is the unit external normal to Or. The second 
condition in (1.2) means that the magnetic field is concentrated entirely inside the region 7- and does not leave 
its boundaries. 
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The initial data for the boundary-value problem (1.1), (1.2) are set in the form 

v(x,O) = v~  p(z,O) = p~ h(z ,O)  = h~ s(a:,O) = s~ (1.3) 

Here the functions p~ and so(=) are arbitrary, and, together with the function h~ the function v~ 
should reduce the fourth equation of system (1.1) to an identity, on the one hand, and guarantee the satisfaction 
of the boundary conditions (1.2), on the other hand. We assume that all the fields have a sufficient degree of 
smoothness. 

It is worth noting that the mixed problem (1.1)-(1.3) is the mathematical model of a plasma installation 
whose magnetic system ensures ideal confinement conditions for a plasma which is in contact with the 
casing surface. A study of this problem is necessary to examine a more general and realistic (from the 
physical viewpoint), problem, namely, the problem simulating a plasma installation in which the ideal 
confinement conditions for a plasma separated from the casing by a vacuum interlayer (in accordance with 
the thermoinsulation requirement) are realized [3]. 

Direct calculations show that the energy integral 

E1 = K1 + lI1 = const, 2K1 = [[pvivi] dr, 
(1.4) I" 

/[ 1 ] 
II1 = pe(p, s) + ~ hihi dr, dr = dxl dx2 dx3. 

7" 

is preserved on the solutions of the initial boundary-value problem (1.1)-(1.3). 
The exact steady-state solutions of problem (1.1)-(1.3) 

v = O ,  p=po(:e) ,  p = p 0 ( = ) ,  h=h0(a : ) ,  s = s o ( = ) ,  (1.5) 

which correspond to the quiescent states of an ideal compressible medium with infinite conductivity in the 
magnetic field, satisfy the equations 

1 . [cghoi Ohok~ Opo cghok Oe 
-~r h~ -~zi ] -- Oxi' Dx----[ = O, e = eo(Po,so), po = p2 ~p (PO,SO) in r (1.6) 

and the condition 

hoini=O on 07". (1.7) 

The goal of the further consideration is to show the instability of the quiescent states (1.5)-(1.7) relative 
to small spatial perturbations. 

2. Formulat ion of t he  Linear ized P r o b l e m .  To reach our goal, the initial boundary-value problem 
(t.1)-(1.3) is linearized on the exact steady-state solutions (1.5)-(1.7). As a result, we obtain the system of 
equations of motion 

po ot =-ox--S,+-iT~Y~ 0x, + ~ - ~  ~ j ,  ~+y~- ;~  (pov~)=o, 

Oh~ 0 , 
01 -- Oxk (vih~ -- v~hoi ), c3x----~ k c3s' Oso - -  - -  ~ +4b-~k = 0, (2.1) 

p' c0~p ' + p0s 0 - ~ ( p 0 , s 0 ) ,  c~ p0 p0 = = 2 ~ ( p 0 , s 0 ) +  (p0,s0) , 

which determines the evolution of the small perturbations of the velocity v', density p', pressure p', entropy 
s', and magnetic field h' in the region r with time. This system is suppIemented by the no-slip conditions 

v~n~ = 0, h ~  = 0, (2.2) 

which are posed at the boundary Or, and by the initial data 

v' (z ,0 )  = v'~ p'(z ,0)  = p,0(z), h ' (z ,0 )  = h'~ s ' (= ,0)  = s'~ (2.3) 
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the restrictions similar to those adopted earlier for the functions v~ and h~ from (1.3) are imposed on 
Lhe functions v'~ and h'~ Hereafter, the primes at the quantities indicating the perturbation fields, 
which distinguish them from the full solutions of problem (1.1)-(1.3), are omitted. 

The instability of any of the quiescent states (1.5)-(1.7) to small spatial perturbations may be 
:onsidered proved only in the case where at least one perturbation that exponentially increases in time is 
found. In view of this, it is advisable to narrow the domain of search for this perturbation. Our further 
consideration is concerned with a class of motions in which the perturbations of the entropy of liquid particles 
(the Lagrangian perturbations of the entropy field) are equal to zero. In other words, it is assumed that the 
entropy of each liquid particle does not vary during perturbations, and the perturbations are assumed to 
be the displacements of the particles from their equilibrium positions. The simplest way to describe these 
perturbations is to introduce the field of Lagrangian displacements ~ = ~(=, t) = (~1, ~2, ~3) [4] for which the 
relation 

0t = vi (2.4) 

is satisfied. 
Using the field ~, we write the linearized initial boundary-value problem (2.1)-(2.3) as follows: 

po Ot--- T - Ox---ii 4~r \ Ox k Oxi ) -4-~rr \ ~ Ozi ) 

0 0 Oso 
P = - O z k  (P0~k), hi = Oxk (~ihok - (khoi), s = -~k Ozk' 

0% (po, so)) +Po ~p2 

(2.5) 02e ( Oe 
p = c 2 p + p ~ s ~ ( p o , s o ) ,  c 2=p0  2~pp(po,so) in % 

~ini = O, hini -- 0 on Or, ~(a:,0) = ~~ v(x,0) = v~ 

For the solutions of problem (2.4), (2.5), the linear analog of the energy integral holds: 

E ='K + H = const, 2K =/[povivi] dr, 
r (2.6) 

h, Oho,)] 
T 

One can show that the second variation of the functional II1 (1.4), which is written in appropriate 
notation, coincides with the functional H, and its first variation vanishes on the quiescent states (1.5) by 
virtue of conditions (1.6) and (1.7). 

If, for all admissible fields of Lagrangian displacements ~ (2.4), the inequality II ~> 0, which corresponds 
to reaching a minimum of the functional H1 on the exact steady-state solutions (1.5)-(1.7) of problem (1.1)- 
(1.3), is valid, the stability of the quiescent states (1.5)-(1.7) relative to small spatial perturbations follows from 
the nondependence of the functional E on time. In essence, this result is one of the forms of the Lagrange 
theorem [5-7] on the equilibrium stability of the mechanical system in the presence of a minimum of the 
potential energy in it. 

The Lagrange theorem will be inverted below, i.e., the instability of the quiescent states (1.5)-(1.7) to 
small spatial perturbations will be shown provided that the functional H1 does not reach its minimum value 
on them. In terms of the field of Lagrangian displacements ~, this means that there is an initial field ~~ 
(2.5) which has the following important property: 

rI(o) < 0 if ~ = ~~ (2.7) 

For other initial fields of Lagrangian displacements ~0(=), the inequality (2.7) can be replaced by an opposite 
inequality, i.e., the quiescent states (1.5)-(1.7) are the infinite-dimensional analog of the "saddle" point of the 
functional II1 (1.4). 
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3. Lyapunov Funct ional .  According to [8-10], we introduce the auxiliary functional 

= [[Po~i~i] dr, (3.1) M 
T 

the double differentiation of which in time and subsequent transformations with the use of (2.4)-(2.6) yields 
the relation 

d2 M 
dt z = 4(K -17)  = SK - 4 E ,  

called a virial equality [4]. In turn, multiplying this equality by an arbitrary constant factor A and subtracting 
from (2.6), we obtain the equation 

= 2AE~ - 4AK:~, E:~ = Kx + 17~, 2II~ = 2II + A2M, 
dt 

(3.2) dM 
[ I -- A~ dr. 2Kx = 2 K -  A ~ + A2M = _ p o  -~- 
T 

If one sets A > 0, by virtue of the nonnegativity of the functional Kx, the differential inequality 

dEx 
~< 2AEx 

dt 

follows from (3.2), the integration of which allows one to obtain the relation 

Ex(t) ~< Ex(0) exp (2At) (3.3) 

which is of primary importance for our consideration. 
It is noteworthy that the inequality (3.3) is valid for any solutions of problem (2.4), (2.5) and for 

any positive values of the parameter A. In addition, the derivation of this inequality does not require any 
restrictions to be imposed on the sign of the functional 17(2.6). 

The inequality (3.3) indicates that the functional Ex varies monotonically with time. This circumstance 
enables us to regard it as the Lyapunov functional [5, 8]. 

4. U p p e r  and Lower Es t ima tes .  Setting the initial data for the fields of Lagrangian displacements 
and the perturbations of the velocity field v (2.4), (2.5) appropriately, with the use of the inequalities (3.3) 

one can obtain two-sided exponential estimates of the increase in small spatial perturbations of the quiescent 
states (1.5)-(1.7) and to derive an exact formula for calculation of the rate of increase of the most rapidly 
growing perturbations. 

Indeed, let the initial field of Lagrangian displacements ~0 be such that condition (2.7) is satisfied 
for this field. Taking into account that the fields of Lagrangian displacements ~ and the perturbations of 
the velocity field v are set at the initial moment irrespective of each other, as the latter, we can choose the 
functions v ~ which satisfy the inequality K(0) < [H(0)[. In this case, according to (3.2), the functional Ex(0) 
will be nothing but the second-order polynomial relative to A with a positive factor M(0) (3.1) for A 2 and a 
negative constant term E(0) (2.6): 

E~(O) = Z(O) A dM 2 dt (0) + A2M(0). 

Let A > 0; then it follows from (4.1) that, on the interval 

1 dM 
0 < A < A I = B + C  U2 B = 4 M ( 0 )  dt (0), 

the relation 

E~(0) < 0 

(4.1) 

C = B 2 E ( 0 )  ~-~ )  ] ,  (4.2) 

(4.3) 

holds. 
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The inequalities (3.3) and (4.3) show that the solutions of the initial boundary-value problem (2.4), 
(2.5) increase exponentially in time. 

If A = A1 - 6 with any 6 from the interval ]0, AI[, relation (3.3) takes the form 

EAI-s(t) <~ EA,-6(O) exp [2(A1 - 6)t] [EA1-6(0) < 0]. (4.4) 

Using the definition of the functionals E~, K~, and H~ (3.2), one can derive the inequality E~(t) > II(t), 
which allows one to put relation (4.4) into the form 

II(t) < EAI-~f(0) exp [2(A1 - ~)t]. (4.5) 

Using the additional functional 

(4.6) 
T 

we transform the inequality (4.5) to the more informative relation 

g(t) > ]cZ&_~(0)[ exp [2(A1 - ~)t] (4.7) 

(c is the known constant), from which one can conclude that the parameter A1 - 6 of (4.2) and (4.4) gives 
the lower estimate of the increments of the solutions of problem (2.4), (2.5). 

The estimate (4.7) is essentially improved if the initial perturbations of the velocity field v ~ (2.5) are 
related to the initial field of Lagrangian displacements ~0. (2.5) and (2.7) as follows: 

v0(x)  = )~~ (4.8) 

Indeed, in the presence of the coupling (4.8) it follows from of (3.2) that 

K~(0) = 0, E~(0) = II~(0). (4.9) 

Assuming A > 0, according to (4.1) and (4.9), it is easy to see that the relation H~(0) < 0 holds on the interval 

f 2n(0) ,2 
0 < A < A =  (4.10) 

If A = A - ~fl with any 61 from the interval ]0, A[, with allowance for (4.9) the inequality (3.3) can be reduced 
to the relation 

Eh-~x(t) ~< HA-~I(0) exp [2(A - ~l)t] (HA_~I(0) < 0). (4.11) 

From (4.6) and (4.11), we obtain the inequality 

g(t) > ]ca IIA_61(0)[ exp [2(h - ~l)t] (4.12) 

(Cl is the known constant), which shows that the parameter A-61 of (4.10) and (4.11) gives the lower estimate 
of the increments of the solutions of the initial boundary-value problem (2.4), (2.5), (4.8). 

A comparison of the estimates (4.7) and (4.12) shows that the solutions of problem (2.4), (2.5), the 
initial data for which satisfy condition (4.8), increase more rapidly than other perturbations. 

Moreover, one can show that the perturbations with initial data (4.8) are the most dangerous, because 
the most rapid growth of the solutions of problem (2.4), (2.5) is observed for 

A + = sup~o.(~.)A. (4.13) 

To do this, it is necessary to obtain an estimate that  restricts from above the increase in the small spatial 
perturbations of the quiescent states (1.5)-(1.7). For this, as a parameter ,~, we use a positive number which 
is greater than A + in magnitude. Then, for all the possible initial fields of Lagrangian displacements ~0 (2.5), 
the relation H;~(0) > 0 is valid. Hence, the functional E~ (3.2) is also positive definite for all the possible 
initial fields of Lagrangian displacements ~0 and the perturbations of the velocity field v ~ (2.4) and (2.5). 
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This means that ,  for A = A + + r ( ~ > 0), the relation 

EA++e(t ) ~< Eh++e(0 ) exp [2(A + + e)t], 

follows from the basic inequality (3.3). Using the inequalities IIA+(t ) >~ 0, the latter relation can be rewritten 
in the more obvious form 

2gh++~( t  ) + e(2h + + e ) M ( t )  <. 2Zh++~(0 ) exp [2(A + + ~)t]. (4.14) 

It follows from relation (4.14) that  the parameter  A + + e of (4.10) and (4.13) gives the upper estimate of the 
increments of the solutions of the initial boundary-value problem (2.4), (2.5). 

A comparison of the inequalities (4.12) and (4.14) allows one to conclude that  the parameter A + 
estimates the rate of increase of the solutions of problem (2.4), (2.5), (4.8) from below and from above: 

A + - S a < ~ w , < ~ A  + + e .  (4.15) 

The  est imate (4.15) shows that  the solutions of the  initial boundary-value problem (2.4), (2.5), whose 
increment is equal to A + (4.13), increase most rapidly. 

Hence, if condition (2.7) is satisfied, having calculated the value of A + by formulas (4.10) and (4.13), 
we can answer the following question: for what characteristic t ime will the quiescent states (1.5)-(1.7) of an 
ideal compressible medium with infinite conductivity in the  magnetic field "deteriorate"? 

We note that  the linear stability of the magnetohydrodynamic  equilibrium of an ideally conducting 
plasma with the equation of state in the form of a Poisson adiabat was investigated by the authors in [11]. 
The basic drawback of the sufficient conditions for plasma confinement in the magnetic  trap obtained in [1] 
lies in tha t  the construction of the corresponding Lyapunov functional includes the first integrals of helicity, 
As a ma t t e r  of fact, they led to an implicit elimination of the zero-helicity perturbat ions from consideration, 
which, nevertheless, decrease the  effective potential energy. The results of the present s tudy are free from this 
disadvantage. 

Another  important circumstance, to which a t tent ion should be paid, is that  the above-described 
technique of obtaining two-sided exponential estimates of the increase in small spatial perturbations can 
be applied also to the problem of the instability of spatially-periodic magnetic fields located in a quiescent 
boundless ideal compressible medium of infinite conductivity. Here the domain r is the analog of elementary 
cells of these magnetic fields, and its boundary Or is the  analog of the cell surface. 

5. E x a m p l e .  Let the inviscid compressible, ideally conducting medium filling the boundless space be 
at rest in a magnetic field of the form [12-16] 

h0 = A(cos ax3 + sin ax2,  cos a x l  + sin ax3 , cos ax2 + sin a x l  ), (5.1) 

where A and a are any positive constants, the first of which is the amplitude of the field, and the second is its 
inverse spatial scale. The magnetic field h0 is a particular case of the spatially periodic field called a force-free 
Beltrami field [15, 16]. 

It is assumed that the quiescent medium considered is homogeneous, i.e., 

p = p0 = const, p = p0 = const, s = so = const .  (5.2) 

p = p0 = const, p = p0 = const, s = so = const .  (5.2) 

In addition, a certain point  O is fixed in the boundless space as the origin of the Cartesian coordinate 
system. In this system, the domain shaped like a rectangular parallelepiped is selected geometrically: 

9t = ( x a , z 2 , z a )  : -2"-'~ <~ z l  <~ ~--~; - a  <~ z2 <~ a; 0 <~ z3 <~ �9 (5.3) 

Here a is a certain positive constant.  
It is possible to convince oneself that  the quiescent state (5.1), (5.2) is the exact solution of the steady- 

state equations (1.6), and the field h0 satisfies condition (1.7) on the parallelepiped surface ft. 

322 



This quiescent state will be unstable to, for example, the field of Lagrangian displacements, which has 
the following form at the initial moment: 

~0 = b(x~, 0, 0) (5.4) 

(b is a constant positive factor). 
Indeed, the direct calculations with the use of (2.6) and (5.1)-(5.4) show that, in this case, 

n ( 0 )  = z -  + 8) - g 

It follows that condition (2.7) is satisfied for 

c~ > - ~r 2 + 8 ( 5 . 5 )  
a 

Choosing a and a in a way such that the inequality (5.5) holds, it is easy to see that the perturbations 
(5.4) imposed on the quiescent states (5.1) and (5.2) increase according to the two-sided exponential estimates 
(4.7), (4.12), and (4.14). Here, using formulas (4.10) and (4.13), one can determine the rate of increase of A + 
for the most rapidly growing perturbations in (5.4). 

This example allow us to make some important remarks. First, condition (5.5) on the inverse spatial 
scale c~ of the field h0 (5.1) is in agreement with the conclusion of Molodensky [12-14] on the instability of a 
force-free Beltrami field to small large-scale perturbations. Secondly, the existence of the field of Lagrangian 
displacements ~0 (5.4), relative to which the quiescent states (5.1) and (5.2) are unstable, indicates the 
incorrect result of [15] according to which the force-free Beltrami field should be absolutely steady against 
any small spatial perturbations. Makov [16] also indicated the incorrectness of this result; however, the example 
of the initial field of Lagrangian displacements for which the second variation of the magnetic-field energy 
with satisfaction of a definite condition becomes negative cannot be considered demonstrative, because this 
field contradicts the solenoidality requirement adopted by the author of [16]. 

The authors thanks L. G. Badratinova for useful discussions and valuable comments. 
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